
106L Labs: Harvesting Logistic Populations

Harvesting Logistic Populations
In this lab, we will consider the effects of populations of fish that grow logistically and are harvested
for food. We will see that for a given population, there is critical harvesting rate that determines
the long-term sustainability of the population. This is called the Maximum Sustainable Yield.

Recall the logistic equation

dP

dt
= kP

(
1− P

L

)
, P (0) = P0

Its solution is the the logistic function:

P (t) =
L

1 +Ae−kt
with A =

L− P0

P0
.

Review

Refer back to Lab 9 (Questions 6-9), and to Worksheet 13-3 for this section.

1. (a) Draw a graph of dP
dt vs. P for the logistic equation. Note that this is not the graph of

the solution. That’s P vs t!

(b) Label the roots of your graph. What feature of the differential equation do your roots
correspond to?

(c) What term do we use for the constant L in terms of the population?

(d) For what value of P does dP
dt reach a maximum? What is dP

dt at this population? Add
this point to your graph and label it with its coordinates. What feature of the graph of
the solution P (t) does this maximum correspond to?

Using the Applet

In this week’s lab, we will use a custom-written1 applet to understand the logistic equation. Open
the Geogebra applet. The applet displays the fish population of a fishery (in thousands of fish)
over time (in years), modeled by the logistic equation with k = 1 year−1 and L = 100 thousand fish.

You will see two graphs:

� The slopefield for dP
dt = P

(
1− P

100

)
with two solution curves plotted:

– P (0) = 1 thousand fish

– P (0) = 110 thousand fish

� The graph of dP
dt vs. P .

Note that the roots of the graph of dP
dt vs. P correspond precisely to the two equilibria of the

differential equation: a population of zero fish, and the carrying capacity, 100 thousand fish.

1By Rann Bar-On: rann@math.duke.edu.
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Harvesting

Up to now, we have considered an undisturbed population modeled by a logistic equation. In this
lab, we consider the effect of harvesting on the population. By harvesting, we mean removing a
fixed number of fish from the popultion per unit time. Note that this is distinct from removing a
proportion of the population. We deal with the latter case in class and focus on the former here.

2. First, a thought experiment:

(a) Suppose first that the fish population is large (near its carrying capacity). If a relatively
small number of fish were harvested each year, what effect would you expect to see on
the fish population?

(b) Next, suppose the fish population is very small. What would harvesting fish do to the
population?

3. Now back to the math: suppose that a constant number H of fish per year are removed from
the population. The model is now

dP

dt
= kP

(
1− P

L

)
−H.

Use the slider in the applet to increase H from zero fish per year to H = 20 thousand fish
per year to see a model of what happens when 20 thousand fish are harvested per year.

(a) Note the shift in the graph of dP
dt vs. P down by 20 units. What is the effect of this on

the roots/equilibria?

(b) The applet now displays three solution curves: one with P (0) = 110 thousand fish, one
with P (0) just above the lower equilibrium, and another with P (0) just below it. By
examining these curves, determine the stability of each of the equilibria.

(c) Now reconsider your thought experiment from the previous question:

i. Suppose that the fishery initially has a fish population higher than the lower equi-
librium. What will happen over time? Why does it make sense that the long-term
population of fish is no longer the carrying capacity of 100 thousand fish, but is
lower instead?

ii. Suppose instead that the fish population is initially less than the lower equilibirum.
What will happen over time? Explain why this happens.

Sustainable Harvesting

We saw in the previous part that if we harvest a small number of fish, and the initial population
is sufficiently high, the fish population is stable over time. We now turn to quantifying just how
many fish can be harvested to maintain this stability, and understanding the consequences if this
limit is exceeded.

2



106L Labs: Harvesting Logistic Populations

4. (a) Consider the general logistic model dP
dt = kP

(
1− P

L

)
. What is the maximal value of

dP
dt in term of k and L? (Refer back to question 1(d).) For reasons we will see shortly,
we call this value the maximal sustainable yield (MSY) of the fishery, and denote it by
HMSY.

(b) In the case displayed on the applet, what is the exact value of HMSY? Locate it on the
graph of dP

dt vs. P . Use the slider to display the model when H = HMSY, then answer
these questions:

i. Suppose we harvest exactly H = FMSY fish per year. Why would we then only have
one equilibirium? Would it be stable or unstable?

ii. If H = FMSY, it is possible for the fishery to be viable over time? Under what
circumstances?

5. (a) In theory, with a sufficiently large population, harvesting exactly HMSY fish per year
appears to be sustainable, as our model does not predict a collapse of the fishery. Why
is this a bad idea in practice? Why might harvesting exactly the MSY of fish lead to
collapse in practice?

(b) Understanding this, the local government proposes to allow harvesting of just a small
amount less than the MSY of fish. Move the slider to show the situation when H = 24.9
thousand fish per year. Observing the graphs, give arguments for and against this policy.
Consider that there may be varying environmental conditions in the real world!

Overfishing and Collapse

Suppose that the harvesting rate is greater than HMSY. We refer to this as overfishing.

6. Move the slider to show the situation when we harvest H = 27 thousand fish per year.

(a) Are there any equilibria? What about the graph of P vs. dP
dt tells you that solutions

still have an inflection point?

(b) Describe in words the change in fish population under conditions of such overfishing.
Carefully refer to changing rates of population decrease in your answer: are the rates of
collapse always accelerating? Explain.

Even in conditions of overfishing, it may be possible to intervene to prevent total collapse of a
fishery. However, since HMSY is often very hard to compute in practice (as the values of k and L
themselves are not easily discoverable), this can be difficult.

7. For this question, you will need to examine how the solution curves behave as H moves from
a little below HMSY (say, H = 24 thousand fish per years) to above (say, H = 27 thousand
fish per year).

(a) By considering the upper solution at time t = 8 years as H moves from 24 to 27 thousand
fish per year, explain why it might be very difficult to detect whether a population is
being overfished or not merely by knowing the fish population level and its trend, without
knowledge of the value of HMSY.

(b) Explain why, in the case of overfishing, once the population is below the inflection point,
the situation is dire and critical, and action should be taken immediately.
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(c) Suppose that the local government decides to intervene to mandate lower fishing levels,
as it suspects overfishing.

i. Suppose that at the time of intervention, the fish population is still above the IP.
Explain why, at least in theory, if fishing is reduced to any amount below HMSY,
the fish population is likely to recover.

(Hint: The IP is always at P = L
2 . In our case, this is 50 thousand fish. What

happens to the fish population if, say P = 60 thousand fish and H is reduced to be
any amount below HMSY = 25 thousand fish per year?)

ii. Suppose by contrast that the fish population is below the IP. Explain why in this
case, the amount below HMSY to which fishing is reduced may determine whether or
not the population will recover or still die out.

(Hint: in our case, suppose that 35 thousand fish remain. Compare what hap-
pens if H is reduced to 24 thousand fish per year vs. if H is reduced to 20 thousand
fish per year.)

iii. The government argues that since fish stocks appear to dropping, it is necessary to
temporarily completely stop fishing to ensure the recovery and long-term sustain-
ability of the population. The union of workers who rely on fishing for a living argues
that such drastic measures are not necessary. Give mathematical justifications for
both arguments. Keep in mind that parameters are hard to measure (k, L, and the
current population in particular).

Report

Hand in answers to Questions 3(c), 5, and 7. Be sure to write in complete sentences, explain your
work carefully, and include any plots from the applet as needed.
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