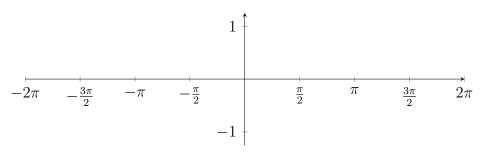
Reminder: Inverse Functions

Defintion A function f is *invertible* if the following equivalent conditions are fulfilled:

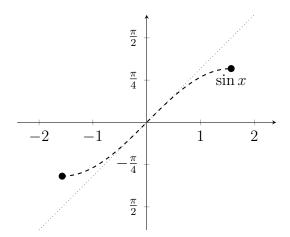
- f is a one-to-one function;
- $x \neq y \Rightarrow f(x) \neq f(y)$;
- f(x) passes the horizontal line test.

If $f^{-1}(x)$ is the inverse of f, then

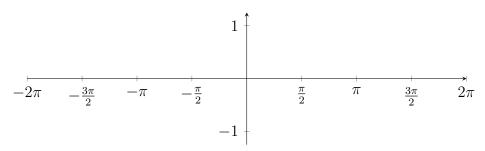

- $f(f^{-1}(x)) = x$ for all x in the domain of f^{-1} , and $f^{-1}(f(x)) = x$ for all x in the domain of f.
- $y = f^{-1}(x) \Leftrightarrow x = f(y)$.
- $Domain(f^{-1}) = Range(f)$ and $Range(f^{-1}) = Domain(f)$.
- The graphs of f(x) and $f^{-1}(x)$ are symmetric about the line y=x.

Inverting Trigonometric Functions

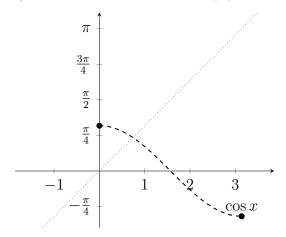
Now let's apply what we know about inverse functions in general to the specific functions $y = \sin x$ and $y = \tan x$.


 $\sin x$

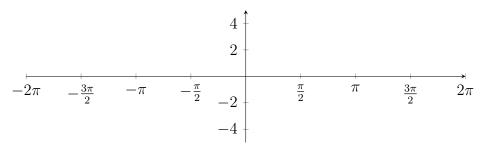
1. (a) On the axes below graph $y = \sin x$ on $[-2\pi, 2\pi]$.


- (b) Why is $\sin x$ not invertible on $[-2\pi, 2\pi]$?
- (c) What is the simplest domain on which $\sin x$ is invertible?
- (d) Let's call the inverse of $\sin x$ on that domain $\sin^{-1} x$, or $\arcsin x$. What is the domain of $\sin^{-1} x$? The range?

- 2. (a) What is $\sin(\sin^{-1} x)$? For which values of x is that true?
 - (b) What is $\sin^{-1}(\sin x)$? For which values of x is that true?
 - (c) If $y = \sin^{-1} x$, then $x = ____.$
 - (d) The axes below show a graph of $\sin x$ on the domain $\left[-\frac{\pi}{2}, -\frac{\pi}{2}\right]$. Sketch a graph of $y = \sin^{-1} x$. The line y = x is shown dotted to help you.

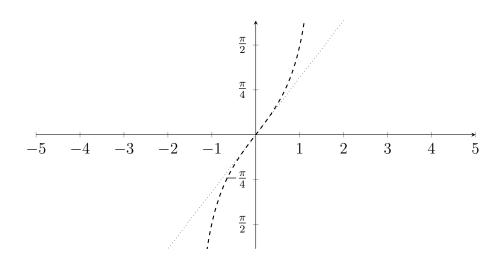

 $\cos x$

3. (a) On the axes below graph $y = \cos x$ on $[-2\pi, 2\pi]$.


- (b) Why is $\cos x$ not invertible on $[-2\pi, 2\pi]$?
- (c) What is the simplest domain on which $\cos x$ is invertible?

- (d) Let's call the inverse of $\cos x$ on that domain $\cos^{-1} x$, or $\arccos x$. What is the domain of $\cos^{-1} x$? The range?
- 4. (a) What is $\cos(\cos^{-1} x)$? For which values of x is that true?
 - (b) What is $\cos^{-1}(\cos x)$? For which values of x is that true?
 - (c) If $y = \cos^{-1} x$, then $x = ____.$
 - (d) The axes below show a graph of $\cos x$ on the domain $[0, \pi]$. Sketch a graph of $y = \cos^{-1} x$. The line y = x is shown dotted to help you.

 $\tan x$


5. (a) On the axes below graph $y = \tan x$ on $[-2\pi, 2\pi]$.

(b) Why is $\tan x$ not invertible on $[-2\pi, 2\pi]$?

- (c) What is the simplest domain on which $\tan x$ is invertible?
- (d) Let's call the inverse of $\tan x$ on that domain $\tan^{-1} x$, or $\arctan x$. What is the domain of $\tan^{-1} x$? The range?

- 6. (a) What is $\tan(\tan^{-1} x)$? For which values of x is that true?
 - (b) What is $\tan^{-1}(\tan x)$? For which values of x is that true?
 - (c) If $y = \tan^{-1} x$, then x =_____.
 - (d) The axes below show a graph of $\tan x$ on the domain $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Sketch a graph of $y = \tan^{-1} x$. The line y = x is shown dotted to help you. Be sure to indicate any asymptotes!

Homework Questions

1. Evaluate the following. Be sure to express your answers in radians.

(a)
$$\sin^{-1}(0)$$
 (b) $\sin^{-1}(1)$ (c) $\sin^{-1}(-1)$ (d) $\cos^{-1}(0)$ (e) $\cos^{-1}(1)$

(f)
$$\cos^{-1}(-1)$$
 (g) $\tan^{-1}(0)$ (h) $\tan^{-1}(1)$ (i) $\tan^{-1}(-1)$

2. In which quadrants do each of the following statements hold?

(a)
$$\sin \theta > 0$$
 and $\cos \theta < 0$ (b) $\tan \theta > 0$ (c) $\tan \theta < 0$

(d)
$$\sin \theta < 0$$
 and $\cos \theta > 0$ (e) $\cos \theta < 0$ and $\tan \theta > 0$

3. For each of the following, solve the equation for the given range. Be sure to express your answers in radians.

(a)
$$\cos(\theta) = \frac{1}{\sqrt{2}}$$
 for $0 \le \theta \le 4\pi$ (b) $\sin(\theta) = \frac{\sqrt{3}}{2}$ for $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$

(c)
$$\tan(\theta) = -\frac{1}{\sqrt{3}}$$
 for $-2\pi \le \theta \le 0$ (d) $\cos(\theta) = 0.42$ for $0 \le \theta \le 2\pi$

(e)
$$\sin(\theta) = 0.91$$
 for $-2\pi \le \theta \le 2\pi$ (f) $\tan(\theta) = 2.14$ for $0 \le \theta \le 5\pi$

4. For each of the following, solve for all x with $0 \le x \le 2\pi$. Express all your answers in radians and give exact answers if possible.

(a)
$$2\cos x = 1$$
 (b) $\tan x = \sqrt{3} - 2\tan x$ (c) $3\sin^2 x + 4 = 5$

(d)
$$4\tan x + 3 = 2$$
 (e) $3\cos^2 x + 2 = 3 - 2\cos x$ (f) $3\sin^2 x + 3\sin x + 4 = 3 - 2\sin x$